Tentative schedule
Winter 2026, tuesday and thursday from 4h05pm to 5h35pm (STBIO S1/4).
Course 1 (06/01) : Syllabus overline + Why linear algebra? Notations.
Course 2 (08/01) : Matrix algebra (part 1, operations and properties, dot product and transpose).
Course 3 (13/01) : Matrix algebra (part 2, matrix multiplication). Add/Drop deadline.
Course 4 (15/01) : Matrix algebra (part 3, more matrix products).
Course 5 (20/01) : Matrix algebra (part 4, inverses). Withdrawal with refund deadline.
Course 6 (22/01) : Solving linear systems (part 1, elementary row operations and row-equivalence).
Course 7 (27/01) : Solving linear systems (part 2, elementary matrices again).
Course 8 (29/01) : Solving linear systems (part 3, Gauss-Jordan algorithm).
Course 9 (03/02) : Solving linear systems (part 4, homogeneous systems and invertible matrices).
Course 10 (05/02) : Invertible matrix theorem and determinants (part 1).
Course 11 (10/02) : Invertible matrix theorem and determinants (part 2).
Course 12 (12/02) : Midterm practice (if time, else: end of pre-midterm content) .
Course 13 (17/02) : Midterm exam
Course 14 (19/02) : Vector geometry (part 1).
Course 15 (24/02) : Vector geometry (part 2).
Course 16 (26/02) : Vector geometry (part 3).
Reading break (02/03 — 06/03).
Course 17 (08/03) : Vector geometry (recap).
Course 18 (10/03) : Subspaces (part 1). Withdrawal without refund deadline.
Course 19 (12/03) : Subspaces (part 2).
Course 20 (17/03) : Subspaces (part 3).
Course 21 (19/03) : Linear independance and bases.
Course 22 (24/03) : Bases and Gramm-Schmidt algorithm.
Course 23 (26/03) : Linear transformations and standard matrix.
Course 24 (31/03) : Kernels and image.
Course 25 (02/04) : Diagonalization (part 1).
Course 26 (07/04) : Diagonalization (part 2).
Course 27 (09/04) : Final practice and big summary.