Tentative schedule
Winter 2025, tuesday and thursday from 8h35am to 9h55am (STBIO S1/4).
Course 1 (08/01) : Syllabus overline + Why linear algebra?
Course 2 (09/01) : Matrix algebra (part 1, operations and properties).
Course 3 (14/01) : Matrix algebra (part 2, dot product and matrix multiplication). Add/Drop deadline.
Course 4 (16/01) : Matrix algebra (part 3, more matrix products).
Course 5 (21/01) : Matrix algebra (part 4, inverses). Withdrawal with refund deadline.
Course 6 (23/01) : Matrix algebra (part 5, recap).
Course 7 (28/01) : Solving linear systems (part 1, elementary row operations and elementary matrices).
Course 8 (30/01) : Solving linear systems (part 2, row echelon form and Gauss–Jordan algorithm).
Course 9 (04/02) : Solving linear systems (part 3, structure of solutions).
Course 10 (06/02) : Solving linear systems (end).
Course 11 (11/02) : Invertible matrix theorem and determinants.
Course 12 (13/02) : Midterm practice.
Course 13 (18/02) : Midterm exam.
Course 14 (20/02) : Determinants and adjugate formula for the inverse.
Course 15 (25/02) : Vector geometry (part 1). Withdrawal without refund deadline.
Course 16 (27/02) : Vector geometry (part 2).
Reading break (03/03 — 07/03).
Course 17 (11/03) : Vector geometry (part 3).
Course 18 (13/03) : Vector geometry (part 4).
Course 19 (18/03) : Vector geometry (part 5). Alexis Leroux-Lapierre will give this lecture in my place.
Course 20 (20/03) : Subspaces (part 1). Alexis Leroux-Lapierre will give this lecture in my place.
Course 21 (25/03) : Subspaces (part 2).
Course 22 (27/03) : Linear independance and bases.
Course 23 (01/04) : Bases and Gramm-Schmidt algorithm.
Course 24 (03/04) : Linear transformations and standard matrix.
Course 25 (08/04) : Kernels and image.
Course 26 (10/04) : Final practice and big summary.